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Abstract. Continued fraction solutions to the Riccati equation are constructed using the 
idea of 'form invariance' of this equation under linear fractional transformation of the 
dependent variable. This method has recently been applied to the scalar case and a 
modification and extension to the corresponding matrix equation is described. It is shown 
that the technique is related to Euler's method for generating continued fraction solutions 
to the corresponding second-order linear differential equation. Several particular examples 
are considered and lead to some well known continued fraction representations of standard 
functions. It is demonstrated that the elements of the continued fraction solution are 
solutions of the 'Toda lattice' equations. We have therefore discovered an intriguing 
connection between the Riccati and the above equations which deserves further investi- 
gation. 

1. Introduction 

The matrix Riccati equation 

W (  t )  = A (  t )  + B ( t )  W ( t )  + W ( t ) C ( t )  + W (  t ) D ( t )  W (  t )  (1.1) 
where A, B, C, D and W are ( n  x n) matrix functions of t, plays a central role in many 
applications, e.g. optimal control theory, Backlund transformations for many non-linear 
partial differential equations, plasma physics, etc. There has been much progress 
recently in the understanding of how the general solution of (1.1) may be constructed 
by superposing particular solutions (Anderson et a1 1983). It is a remarkable fact that 
in the general case only five particular solutions are needed to construct the general 
solution. 

The problem is then to obtain sets of particular solutions. There have been several 
approaches to this problem for the scalar case and we will concentrate on that of the 
construction of continued fraction solutions using the idea of 'form invariance' of the 
Riccati equation under linear fractional transformation of the dependent variable 
(Chisholm 1984). As described in § 2, a simple transformation of W (  t )  to .To( t )  leads 
to an equation of the 'standard form', 

i o (  t 1 = Eo( t 1 + Z o (  t 1 Fa( t 1 + ZO( t l 2  (1.2) 
where Z,( t ) ,  etc, are ( n  x n) matrix valued functions of t. Then we construct a continued 
fraction solution, 

Zo( t )  = v o + [ N , ( t ) -  Uo- (N*( t ) -  U,-[.  . . ] - ' M ~ ( t ) ) - ' M z ( t ) ] - ' M l ( t )  (1.3) 

0305-4470/86/ 101889 + 10$02.50 0 1986 The Institute of Physics 1889 



1890 A K Common and D E Roberts 

where the elements Mk( t ) ,  Nk( t )  are constructed from the given Eo( t )  and Fo( t ) ,  and 
U, is a constant matrix. A modified form of (1.3) which fits exactly a given initial 
value Zo(0) is described in the appendix. 

In D 3 we demonstrate that our method is related to a matrix generalisation of a 
technique due to Euler (Ince 1956). Chisholm (1984) considered the scalar case where 
the Riccati equation can be simplified still further to the ‘standard form’, 

io( t )  = bo( t )  - zo( t)’. (1.4) 

Requiring preservation of this ‘form’ under linear fractional transformation of zo is 
more restrictive than requiring the ‘form’ (1.2) to be preserved. The continued fraction 
solution that he obtained is therefore not identical to (1.3). However, it is equivalent 
to that given by Euler’s method as we will demonstrate in § 3.  

The elements M k ( f ) ,  N k ( t )  of the continued fraction satisfy a pair of coupled 
non-linear difference equations. In 0 4 we give some simple solutions of these equations 
and show that they give standard continued fraction expansions for the tangent and 
cotangent functions. These simple solutions illustrate the fact that the value of the 
continued fraction (1.2) changes when U, is changed, answering in the affirmative a 
question posed by Chisholm (1984). 

For most examples of equation (1.2), the elements Mk(t) and N k ( t )  soon become 
very complicated functions of t as k is increased. This would seem to limit the 
usefulness of our approach to a few special examples. However, this is not the case 
as we will show in § 5 .  There we demonstrate the remarkable fact that the equations 
for Mk( t )  and N k (  t )  are, in the scalar case, equivalent to the canonical equations of 
motion for the ‘Toda lattice’ (Toda 1976). These lattice equations have infinitely many 
solutions generated by Backlund transformations. For each of them we can construct 
a continued fraction solution of a corresponding Riccati equation. We finish § 5 by 
giving our conclusions on this work. 

2. Continued fraction solutions to the matrix Riccati equation 

It is straightforward to show that if W ( t )  is a solution of ( l . l ) ,  then 

Zo( t )  = D( t )  W( t )  - K (  1 )  

i o (  t 1 = Eo( t ) + Zo( t ) Fo( t ) + Zo( t ) 

K ( t )  = - D ( t ) B ( t ) D - ’ ( t )  - D(t)D-’(t) 

(2.1) 

(1.2) 

is a solution of the ‘standard form’ equation, 

when 

(2.2a) 

where 

Eo( t )  = - ~ ( t ) + D ( t ) A ( t ) + K ( t ) C ( t )  Fa( t )  = C ( t > +  K ( t ) .  (2.2 b )  

We construct the continued fraction form (1.3) for Z,( t )  by defining the following 
sequence of linear fractional transformations: 

k = 0 ,  1,2 , .  . . (2.3) 

where N k ( f ) ,  k f k ( t )  are ( n  x n )  matrix functions of t and U, is an ( n  x n )  constant 
matrix. 

Zk ( t ,  = + Nk+ 1 ( t ,  - Zk+ 1 ( t )I-’ k f k +  1 ( t ) 
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Using matrix algebra, it is easy to show that, if Zk-l( t )  satisfies the ‘standard form’ 
equation, 

2 k  - 1 ( t )  = Ek - 1 ( t )  + zk - 1 ( t ,  Fk - 1 ( t ,  + ZE- 1 ( t ,  

2 k  ( t )  = Ek ( t )  + zk( ) F k  ( t )  + z t (  t ,  

(2.4) 

(2.5) 

then 

k = 1 , 2 , 3  

if 

M k ( f ) = E k - l ( f ) +  UOFk-l(f)+ U: ( 2 . 6 ~ )  

and 

N k  ( t )  = uk ( t ,  M t ,  - M k  ( t ) [ F k  - 1 ( t ,  + i’ ( (2.6b) 

where 

E k ( f )  = f i k ( f ) + N k ( t ) U O + M k ( t )  ( 2 . 7 ~ )  

and 

Fk( ?) = - N k (  f )  - (2.76) 

The coefficient matrices may be eliminated from (2.6) and (2.7) to give the following 
non-linear recurrence relations for the elements of the continued fractions (1.3) for 
Z o ( t ) :  

M k  ( t ) = M k -  1 ( t )  + [ Nk- 1 ( ), U01 + f i k -  1 ( t )  ( 2 . 8 ~ )  

N k ( f )  = k f k ( f ) N & l ( f ) M k l ( f ) +  kfk(t)kf;’(?). (2.8b) 

In the scalar case these relations reduce to the remarkably simple forms 

M k  ( t )  - M k -  1 ( t )  = f i k - l (  t )  

N k (  ?) - N k - l (  ?) = k k (  f ) M k (  f ) - ’  

( 2 . 9 ~ )  

(2.9b) 

which we will return to later. Note that the ‘initial’ matrix functions M , ( t )  and N , ( t )  
are determined from the coefficients of the original Riccati equation (1.2) by using 
relations (2.6) with k = 1. 

Changing U, will change the initial value Zo(0) as will be demonstrated through 
example in 0 4, though there is no direct relation between them. However, it is possible 
to construct a continued fraction to Z o ( t )  so that, if it is truncated at any order, then 
this truncated fraction has exactly the given initial value Z o ( 0 ) .  The defining equations 
for this continued fraction are appreciably more complicated than (2.6) and (2.7) and 
the details are given in the appendix. 

3. A comparison with Euler’s method 

We demonstrate first of all that Chisholm’s continued fraction solution to (1.4) may 
be obtained using Euler’s method as described by Ince (1956). The first step is to 
convert (1.4) to a linear second-order differential equation by making the standard 
substitution z o ( t )  = WO( t ) /  wo( t )  where now 

(3.1) WO( t )  - bo( t )  WO( t )  = 0. 
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From this equation and its derivative, 

where WO( t )  = (-bo( t ) ) ' / 'w , (  t ) .  The new function wl( t )  satisfies an equation of similar 
form to (3.1), i.e. 

W1( t )  - b,( t )  w I (  t )  = 0 (3.3) 

Iterating, we obtain the following continued fraction solution for the Riccati equation 
(1.4): 

2bz 4bob: 4b1b: z,(t)=-+-+-+. . . 
bo bi bz 

where 

br+, = (4bl-2brb?+ 3bSb,)/4b:. 

(3.5) 

This is exactly the continued fraction given in equation (2.18) of the paper by Chisholm 
(1984). The corresponding solution containing an arbitrary constant (Y given in equation 
(2.28) of that work is 

where now 

br b,,, = b, +- ab, + 3bf - 
b,-a' 4(b,-aZ) '  2(b,-a2) '  

This again may be generated using Euler's method by initially taking 

wo(t)=e"'uo(t) 

and constructing a sequence of functions {vi( t ) }  corresponding to the sequence { wi( t ) }  
taken previously. 

We now show how our method is related in the general matrix case to a form of 
Euler's method. Our 'standard form' matrix equation (1.2) becomes, on making the 
substitution 

zo(t)= -vo(r)-lVo(r) V o ( t ) +  V o ( t ) E o ( t ) -  Vo(t)Fo(t)=O. (3.9) 

To construct a continued fraction solution of (1.2) containing the arbitrary constant 
matrix U,, we set 

so that 

where 

(3.10) 

(3.11) 



Solutions of the Riccati equation 1893 

and 

A = e-"o'A eUo' with A = e,$ 

We now make the substitution so( t )  = kl( t)co( t )  and, as in the standard Euler's 
method, obtain the second-order differential equation for zl( t )  by differentiating (3.10), 

t ) f l (  t )  = 0 (3.12) t )  + g1( t)e',( t )  - 

where 

f l ( t )  = c o ( f ) ~ o ( ~ ) c o ( f ) - l - ~ o ( t ) c o ( f ) - l  (3.13) 

f ! ] (  t )  = CO( t )  -jl( t ) .  (3.14) 

It may be proved using (3.10)-(3.13) that 

- 2 0 ( t ) - ' ~ o ( f )  = ( i l ( t ) + ~ l ( t ) - ~ ~ l ( t ) ) - ~ G l ( t )  (3.15) 

where 

G I (  t )  = eo( t )  i l ( t )  = - f l ( t ) .  (3.16) 

Iterating, we can generate a sequence of matrix functions &( t )  satisfying 

g k ( t )  = g k + l ( f ) c k ( f )  

and the differential equation 

$k+ 1 ( t ) + z k +  I ( t ) ;k+ 1 ( t - g k +  1 ( t ) f k +  1 ( t ) = 0 k = 0, 1 ,2 , .  . * 
(3.17) 

(3.18) 

(3.19) 
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Finally, setting Mk( t )  = ?nk( t ) ,  Nk( t )  = nk(  t )  + U,, we obtain from (3.23) the continued 
fraction (1.3) for the solution of the matrix Riccati equation (1.2), where from (3.25) 
and (3.26), 

M k + l ( f ) = M k ( f ) + ~ k ( t ) + [ N k ( f ) ,  U01 (3.27) 

Nki 1 ( t )  = uk+ 1 ( t ) Mk+ 1 ( t ) -  * + Mk + 1 ( t Nk ( t )  M k +  1 (3.28) 

These are exactly the relations (2.8) so the matrix continued fraction is that obtained 
previously, demonstrating the connection between the method and that due to Euler. 

Note that we have generated the sequence of matrix functions { z k (  t ) }  by requiring 
-&( t )  = zk+l( t ) & (  t )  whereas, in the corresponding scalar case, Chisholm generated 
the sequence of scalar functions { w k (  t ) }  by requiring k k ( t )  = ( - 6 k ( t ) ) " ' W k + l (  t ) .  The 
square root in the latter case implies that the continued fraction solutions we obtain 
in the scalar case will not be equivalent to those of Chisholm. 

( t ). 

4. Examples 

In general the elements M k ( t ) ,  N k ( f )  of the continued fraction increase rapidly in 
complexity as k is increased. However, the non-linear recurrence relations which 
determine these elements have some simple solutions. We confine ourselves to the 
scalar case. An obvious solution of (2.9) is 

Mk( t )  = - (  k- 1)  Nk( t )  = - t  u,=o (4.1) 

where a is a constant. The corresponding 

io( t )  = -a + tZ,( t )  + Z,( t)' 

with continued fraction solution 

a a+1 a + 2  
t t  t 

Z , ( t ) = - + - + -  +. . .. 

Riccati equation is, from (2.7), 

(4.2) 

(4.3) 

This continued fraction is used as an example for Euler's method by Ince (1956) and 
(4.3) is actually the continued fraction for 

m 

Zo(t) = [omexp(-tx-ix')xa dx( 1, exp(-tx-fx')x"-' dx)-l. (4.4) 

Another simple solution of (2.9) is 

Nk ( t ) = 2 k - 1 Mk( t )  = e*' U, = 0. (4.5) 
The corresponding Riccati equation is 

io( t )  = e2' + z,( t )  + z;( t )  

which then has the continued fraction solution 
(4.6) 

Y' Y 2  Y' --_-_-- - 
1 3 5 . . *  

where y =e'. 
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The RHS of (4.8) is the well known continued fraction expansion for y tan y so that 

(4.9) 

we have obtained the solution, 

z;( t )  = e‘ tan(e‘) 

of (4.6). 
Similarly (2.9) has the solution 

Nk(t)=2k M ~ (  t )  = e’‘ U,= -1 (4.10) 

and the corresponding Riccati equation is again (4.6). The continued fraction solution 
is now 

e2r ,21 ,21 

3 5 7 .... 
Z,”(t)=-l+------ (4.11) 

Comparing (4.8) and (4.9), we see that 

z,”( t)Z:( t )  = -e2’ (4.12) 

so that 

z,”( t )  = -e‘ cot(e‘). (4.13) 

In his work Chisholm (1984) queried whether different solutions of the scalar equation 
(3.1) would be obtained by changing the scalar constant LY in the continued fraction 
(3.7). The example we have just considered illustrates the fact that our continued 
fraction solutions do change when the constant U,, is changed. 

Numerical studies show that the continued fractions to (4.6) converge rapidly for 
a wide range of values for t and different values for U,. 

5. The Toda lattice and conclusions 

In § 4  we gave some simple solutions to the non-linear recurrence relations for the 
elements of our continued fraction solutions. These solutions were very special and, 
at first sight, it would seem that there are few cases where (2.9) would have relatively 
simple solutions. 

We show that this is not the case by demonstrating that the non-linear relations 
(2.9) are equivalent to the canonical equations for the ‘Toda lattice’. This lattice 
consists of a one-dimensional chain of particles of unit mass which interact with their 
nearest neighbours via an exponential potential (Toda 1976). Backlund transformations 
may be used to generate whole families of solutions for these lattice equations, as 
reviewed by Rogers and Shadwick (1982). 

The lattice equations have the canonical form 

4 ( k  t )  = P ( k  t )  

P(k t)=exp{-[q(k, t I -q(k-1,  t)l)-exp{-[q(k+l, t ) - q ( k ,  t)]) 

(5.1) 

(5.2) 
where q(  k, t )  is the coordinate of the kth particle and p (  k, t )  is its conjugate momentum. 
Setting N k ( f )  = - p ( k ,  t )  and Mk( t )  = exp{-[q(k, t )  - q ( k  - 1, t)]} the lattice equation 
(5.2) may be written as 

J u t ) =  M k + l ( f ) - M k ( t )  (5.3) 
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and on differentiating the defining equation for M k ( t )  and using (5.1), 

f i k +  1 ( t )  = Mk+ 1 ( 2 Nk+ 1 ( t - Nk ( t )  1. (5.4) 

It is easy to see that after some minor rearrangement (5.3) and (5.4) are equivalent to 
the non-linear equation (2.9) for the elements of our continued fraction solutions. 
Therefore, to each of the infinitely many solutions of the Toda lattice equations, there 
is an explicit continued fraction solution of a corresponding scalar Riccati equation. 

For instance, we can take the ‘soliton’ solution 

M k ( f ) =  1+p2sech2(ak+p t )  k = 0, 1,2,  . . . ( 5 . 5 )  

where P = sinh (Y with (Y a real constant. (5.3) may be integrated to give 

Nk(  t )  = p{tanh[a( k +  1)+Pt]  - tanh[ak+ P t ] }  (5.6) 

and it is easy to show, by substitution, that Mk(  t )  and Nk( t )  do satisfy the non-linear 
recurrence relations (2.9). The functions Eo( t), Fo( t )  in the related Riccati equation 
are easily construcred using (2.7) but are quite complicated. 

As another example, we may consider the periodic solution, the so-called ‘cnoidal 
wave’. We have 

(5.7) Mk( t ) = 1 + P’[ dn2( ak + Pt) - ( E /  K )] k = 0, 1,2, . . . 

where 

E 
+--1 

1 1 _-  
P’-sn’(ak) K 

in which dn and sn are Jacobian elliptic functions, K and E being the complete elliptic 
integrals of the first and second kind respectively. We then obtain 

Nk( t )  = P { Z [ ( Y ( k  + 1) + Pt]-z[ ( ~ k + P t ] }  (5.8) 

in which Z is the Jacobian zeta function. As for the ‘soliton’ case, N k ( f ) ,  Mk(f) may 
be shown to satisfy the relations (2.9) and E,( t ) ,  Fo( t )  in the Riccati equation may be 
formed. 

The corresponding continued fractions, derived using (2.3), are closely related to 
J fractions, which have been studied extensively, e.g. Jones and Thron (1980). 

We have continued the study by Chisholm (1984) into the construction of continued 
fraction solutions to the Riccati equation using ‘form invariance’ of the equation under 
linear fractional transformation of the dependent variable. We have demonstrated that 
the technique can be extended to the matrix case and that there is a close relation to 
the method of Euler for constructing continued fractions for the logarithmic derivative 
of the corresponding linear second-order differential equation. In general, the elements 
of the continued fraction rapidly become very complicated functions of t, especially 
in the matrix case. We intend to study in a future work alternative methods for 
developing continued fraction solutions to the matrix Riccati equation. 

What may well prove to be the most interesting result of this work is the demonstra- 
tion of a connection between the ‘Toda lattice’ equations and the Riccati equation. 
We think this intriguing connection between two important sets of non-linear differential 
equations of mathematical physics merits further study. 
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Appendix 

There is a unique solution of the Riccati equation (1.2) for a given initial value Z,(O). 
We show how to construct a continued fraction solution which gives exactly Z,(O) 
when it is truncated at any order. 

We start by making the linear fractional transformation 

Z,( t ) = U, + V, r + ( N ,  ( t ) - z1 ( t ) ) - I  M~ ( t ) ( A l l  
where both U,, V, are independent of t. 

Then, substituting in (1.2), we find that 

The new coefficient matrices are 

To ensure that the truncated continued fraction is exact at t = 0 at any order, we 
set Z,(O) = 0. From ( A l )  this will be the case if 

U, = Z,( 0) - 1 v,=;[E,(o)+ U,i,(o)-Ml(0)2-M,(0)(Fl(O)+ U,)]. (-47) 

ZO(O), EO(0) and Fa(()). 

Note that the factor t2 multiplying V, ensures that Ml(0) does not depend on V, 
though Ml(t) does at general time. Therefore (A7) determines U,, V, in terms of 

Iterating, we have 
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Once again it should be noted that MkCl(0) does not depend on v k  though kfk+l(f) 

does, so (A14) does give Vk As in the former case the coefficient matrices may be 
eliminated from (A9)-(A14) to give 

Mk+l( 2 )  = fik ( f ) + Nk ( f )( uk- 1 + vk-1 t 2 )  + k f k  ( f ) - ( $. vkf2)( Nk ( ?) + uk- 1 + v k -  1 f 2 )  

+ ( + vkf2)2 - 2 Vkf (A151 

('416) 
Nk+l(f)= n;rk+l(f)Mk+l(f)-'-Mk+l(f)(-Nk(f)- uk-1- Vk-lt2+ uk+ Vkf2)Mk+l(f)-'. 

These non-linear recurrence relations have the merit of giving a continued fraction 
which fits a given initial value Z,(O) when it is truncated at any order. However, they 
are probably too complicated to use in practice. 
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